秋田大学大学院医学系研究科 器官・統合生理学講座 沼田研究室

EN
menu

研究業績

原著論文

    1. Rescue of murine hind limb ischemia via angiogenesis and lymphangiogenesis promoted by cellular communication network factor 2, Shimizu M, Yoshimatsu G, Morita Y, Tanaka T, Sakata N, Tagashira H, Wada H, Kodama S, Scientific Reports, 13(1): 20029, 2023
    2. Scientific Reports( link

    3. Cardioprotective Effects of Moku-boi-to and its Impact on AngII-Induced Cardiomyocyte Hypertrophy,Tagashira H, Abe F, Sato-Numata K,Aizawa K, Hirasawa K, Kure Y, Iwata D and Numata T , Frontiers in Cell and Developmental Biology, 11, 1264076, 2023
    4. Frontiers:( link

      日本で心疾患に広く用いられている漢方薬は、経験的に効果があり副作用も少ないことが知られていましたが、どのようなメカニズムで効果を発揮しているのかは不明でした。本研究は、木防已湯が心臓のアンギオテンシンII受容体に作用して、心肥大につながるミトコンドリア分裂や細胞障害分子を抑制することで、心不全を防ぐことを示した世界で初めての発見です。

      記事が日本経済新聞に取り上げられています。
      日本経済新聞:(link)
    5. Classes on “Structure and Function of the Animal Body” in 2nd Grade Junior High School Science Classes Based on Measurement of Human Phonocardiogram and Electrocardiogram: Application of the ICST System,YOSHINO M, KATSUKI T, ASAHI S, NUMATA T, MATSUKAWA M, HARADA K,HASEGAWA T, Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 75 : 63-75,2023,ISSN 2434-9380
    6. Perineural treatment with anti-TNF-α antibody ameliorates persistent allodynia and edema in novel mouse models with complex regional pain syndrome, Shibata S, Tagashira H, Nemoto T, Kita S, Kita T, Shinoda Y, Akiyoshi K, Yamaura K, Iwamoto T,J Pharmacol Sci, 153(1), 1-11, 2023
    7. ScienceDirect: ( link

    8. Sigma-1 receptor is involved in modification of ER-mitochondria proximity and Ca2+ homeostasis in cardiomyocytes, Tagashira H, Bhuiyan MS, Shinoda Y, Kawahata I, Numata T, Fukunaga K, J Pharmacol Sci, 151(2), 128-133, 2023
    9. ScienceDirect: ( link

    10. Intermediate conductance Ca2+-activated potassium channels are activated by functional coupling with stretch-activated nonselective cation channels in cricket myocytes, Numata T, Sato-Numata K, Yoshino M, Frontiers in Insect Science, 2, 2023
    11. Frontiers: ( link

    12. TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel, Numata T, Sato-Numata K, Hermosura MC, Mori Y, Okada Y, Communications Biology, 4: 599, 2021
    13. これまで細胞容積調節機構に膨らみセンサーカチオンチャネル(TRPM7)タンパクと、元の細胞の大きさに戻すアニオンチャネル(VSOR)タンパクの2つのタンパク質が何らかの役割を担うことは知られていた。しかし、細胞の膨張を抑えるシステムの中でどのような関係で働いているのかは不明であった。本研究は二つのタンパク質(TRPM7とVSOR)が協調することで、膨らんだ細胞が元に戻るしくみを明らかにした世界で初めての発見である。

      PubMed: (link) 

    14. BK channels are activated by functional coupling with L-type Ca2+ channels in cricket myocytes, Numata T, Sato-Numata K, Yoshino M, Frontiers in Insect Science, 1, 662414, 2021
    15. Frontiers: (link) 

    16. Vasopressin neurons respond to hyperosmotic stimulation with regulatory volume increase and secretory volume decrease by activating ion transporters and Ca2+channels, Sato-Numata KNumata T, Ueta Y, Okada Y, Cellular Physiology and Biochemistry, 55(S1), 119-134, 2021
    17. PubMed: (link) 

    18. Expression and functions of N-type Cav2.2 and T-type Cav3.1 channels in rat vasopressin neurons under normotonic conditions, Sato-Numata K, Numata T, Ueta Y, Okada Y, The Journal of Physiological Sciences, 70(1), 49, 2020
    19. PubMed: (link) 

    20. Elucidation of the mechanisms for the underlying depolarization and reversibility by photoactive molecule, Numata T, Fukuda R, Hirano M, Yamaguchi K, Sato-Numata K, Imahori H, Murakami T, Cellular Physiology and Biochemistry, 54(5), 899-916, 2020
    21. 私たちが開発した光誘導性電荷分離分子を用いた脱分極は、細胞のイオン輸送を介する脱分極と膜の代謝を介する再分極メカニズムによることを解明した。

      PubMed: (link) 

    22. O2-dependent protein internalization underlies astrocytic sensing of acute hypoxia by restricting multimodal TRPA1 channel responses, Uchiyama M, Nakao A, Kurita Y, Fukushi I, Takeda K, Numata T, Tran HN, Sawamura S, Ebert M, Kurokawa T, Sakaguchi R, Stokes AJ, Takahashi N, Okada Y, Mori Y, Current Biology, 30(17), 3378-3396.e7, 2020
    23. PubMed: (link) 

    24. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation, Nakamura R, Numata T, Kasuya G, Yokoyama T, Nishizawa T, Kusakizako T, Kato T, Hagino T, Dohmae N, Inoue M, Watanabe K, Ichijo H, Kikkawa M, Shirouzu M, Jentsch TJ, Ishitani R, Okada Y, Nureki O, Communications Biology, 3(1), 240, 2020 (co-first author)
    25. PubMed: (link) 

    26. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation, Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Iwaya C, Horikawa T, Fujimura-Tanaka Y, Hamanoue N, Motonaga R, Tanabe M, Inoue R, Yanase T, Kawanami D, Endocrine Journal, 67(1), 99-106, 2020
    27. PubMed: (link) 

    28. Herbal components of Japanese Kampo medicines exert laxative actions in colonic epithelium cells via activation of BK and CFTR channels, Numata T, Sato-Numata K, Okada Y, Scientific Reports, 9(1), 15554, 2019
    29. 漢方便秘薬の作用メカニズムは、麻子仁がCFTRを、桃仁、杏仁、大黄はBKチャネルを活性化することで上皮細胞から効率的に水分分泌させることを明らかにした。

      PubMed: (link) 

    30. Short TRPM2 prevents the targeting of full-length TRPM2 to the surface transmembrane by hijacking to ER associated degradation, Yamamoto S, Ishii T, Mikami R, Numata T, Shimizu S, Biochemical and Biophysical Research Communications, 520(3), 520-525, 2019
    31. PubMed: (link) 

    32. Construction of a fluorescent screening system of allosteric modulators for the GABAA receptor using a turn-on probe, Sakamoto S, Yamaura K, Numata T, Harada F, Amaike K, Inoue R, Kiyonaka S, Hamachi I, ACS Central Science, 5(9), 1541-1553, 2019
    33. PubMed: (link) 

    34. TRPM7 is involved in acid-induced necrotic cell death in a manner sensitive to progesterone in human cervical cancer cells, Numata T, Sato-Numata K, Okada Y, Physiological Reports, 7(13), e14157, 2019
    35. PubMed: (link) 

    36. TRPM7 channels mediate spontaneous Ca2+ fluctuations in growth plate chondrocytes that promote bone development, Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H, Science Signaling, 12(576), eaaw4847, 2019
    37. PubMed: (link) 

    38. TRPM7-mediated spontaneous Ca2+ entry regulates the proliferation and differentiation of human leukemia cell line K562, Takahashi K, Umebayashi C, Numata T, Honda A, Ichikawa J, Hu Y, Yamaura K, Inoue R, Physiological Reports, 6(14), e13796. 2018
    39. PubMed: (link) 

    40. Cellular mechanism for herbal medicine Junchoto to facilitate intestinal Cl-/water secretion that involves cAMP-dependent activation of CFTR, Numata T, Sato-Numata K, Okada Y, Inoue R, Journal of Natural Medicines, 72(3), 694-705, 2018
    41. PubMed: (link) 

    42. Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin, Miyake T, Nakamura S, Meng Z, Hamano S, Inoue K, Numata T, Takahashi N, Nagayasu K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S, Frontiers in Physiology, 8, 878, 2017
    43. PubMed: (link) 

    44. Integrative approach with electrophysiological and theoretical methods reveals a new role of S4 positively charged residues in PKD2L1 channel voltage-sensing, Numata T, Tsumoto K, Yamada K, Kurokawa T, Hirose S, Nomura H, Kawano M, Kurachi Y, Inoue R, Mori Y, Scientific Reports, 7(1), 9760, 2017
    45. 多発性嚢胞腎の原因遺伝子PKD2L1の機能解析を革新的な実験科学と計算科学の融合で創出した解析法を実施し、電位感受性部位の新たな役割を発見した。

      PubMed: (link) 

    46. Strategy to attain remarkably high photoinduced charge-separation yield of donor–acceptor linked molecules in biological environment via modulating their cationic moieties, Cai N, Takano Y, Numata T, Inoue R, Mori Y, Murakami T, Imahori H, The Journal of Physical Chemistry C, 121(32), 17457–17465, 2017
    47. ACS Publications: (link) 

    48. Uncovering the arrhythmogenic potential of TRPM4 activation in atrial-derived HL-1 cells using novel recording and numerical approaches, Hu Y, Duan Y, Takeuchi A, Hai-Kurahara L, Ichikawa J, Hiraishi K, Numata T, Ohara H, Iribe G, Nakaya M, Mori MX, Matsuoka S, Ma G, Inoue R, Cardiovascular Research, 113(10), 1243-1255, 2017
    49. PubMed: (link) 

    50. Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel, Sato-Numata K, Numata T, Inoue R, Sabirov RZ, Okada Y, Channels (Austin), 11(2), 167-172, 2017
    51. PubMed: (link) 

    52. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS, Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, Takahashi N, Shirakawa H, Mori Y, Nakagawa T, Kaneko S, Nature Communications, 7, 12840, 2016
    53. PubMed: (link) 

    54. Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry, Yamaura K, Kiyonaka S, Numata T, Inoue R, Hamachi I, Nature Chemical Biology, 12(10), 822-830, 2016
    55. PubMed: (link) 

    56. Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models, Ameku T, Taura D, Sone M, Numata T, Nakamura M, Shiota F, Toyoda T, Matsui S, Araoka T, Yasuno T, Mae S, Kobayashi H, Kondo N, Kitaoka F, Amano N, Arai S, Ichisaka T, Matsuura N, Inoue S, Yamamoto T, Takahashi K, Asaka I, Yamada Y, Ubara Y, Muso E, Fukatsu A, Watanabe A, Sato Y, Nakahata T, Mori Y, Koizumi A, Nakao K, Yamanaka S, Osafune K, Scientific Reports, 6, 30013. 2016
    57. PubMed: (link) 

    58. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells, Kiyonaka S, Kubota R, Michibata Y, Sakakura M, Takahashi H, Numata T, Inoue R, Yuzaki M, Hamachi I, Nature Chemistry, 8(10), 958-967, 2016
    59. PubMed: (link) 

    60. Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure., Ohno S, *Yokoi H, Mori K, Kasahara M, Kuwahara K, Fujikura J, Naito M, Kuwabara T, Imamaki H, Ishii A, Saleem MA, Numata T, Mori Y, Nakao K, Yanagita M, Mukoyama M, Scientific Reports, 6, 27192, 2016
    61. PubMed: (link) 

    62. Optical control of neuronal firing via photoinduced electron transfer in donor-acceptor conjugates, Takano Y, Numata T, Fujishima K, Miyake K, Nakao K, Grove WD, Inoue R, Kengaku M, Sakaki S, Mori Y, Murakami T, Imahori H, Chemical Science, 7(5), 3331-3337, 2016
    63. 私たちが開発した光誘導性電荷分離分子の側鎖修飾を行うことで細胞膜における分散性を増加させ、単離培養神経細胞で光誘導性活動電位を発生させることに成功した。

      PubMed: (link) 

    64. Different contribution of redox-sensitive transient receptor potential channels to acetaminophen-induced death of human hepatoma cell line, Badr H, Kozai D, Sakaguchi R, Numata T, Mori Y, Frontiers in Pharmacology, 7, 19, 2016
    65. PubMed: (link) 

    66. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel, Sato-Numata K, Numata T, Inoue R, Okada Y, Pflügers Archiv - European Journal of Physiology, 468(5), 795-803, 2016
    67. PubMed: (link) 

    68. TRPM2 channels in alveolar epithelial cells mediate bleomycin-induced lung inflammation, Yonezawa R, Yamamoto S, Takenaka M, Kage Y, Negoro T, Toda T, Ohbayashi M, Numata T, Nakano Y, Yamamoto T, Mori Y, Ishii M, Shimizu S, Free Radical Biology and Medicine, 90, 101-113, 2016
    69. PubMed: (link) 

    70. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells, Shimizu S, Yonezawa R, Negoro T, Yamamoto S, Numata T, Ishii M, Mori Y, Toda T, The International Journal of Biochemistry & Cell Biology, 68, 119-127, 2015
    71. PubMed: (link) 

    72. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles, Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y, Imahori H, Murakami T, Angewandte Chemie International Edition, 54(40), 11725-11729, 2015
    73. 金ナノロッドに適切な皮膜を行うことで細胞膜へ無毒に局在化し、光誘導性膜温度上昇を行うことで温熱感受性TRPV1チャネルの活性化を達成した。

      PubMed: (link) 

    74. Compromised maturation of GABAergic inhibition underlies abnormal network activity in the hippocampus of epileptic Ca2+ channel mutant mice, tottering, Nakao A, Miki T, Shimono K, Oka H, Numata T, Kiyonaka S, Matsushita K, Ogura H, Niidome T, Noebels JL, Wakamori M, Imoto K, Mori Y, Pflügers Archiv - European Journal of Physiology, 467(4), 737-752, 2015
    75. PubMed: (link) 

    76. Transient receptor potential melastatin 2 protects mice against polymicrobial sepsis by enhancing bacterial clearance, Qian X, Numata T, Zhang K, Li C, Hou J, Mori Y, Fang X, Anesthesiology, 121(2), 336-351, 2014
    77. 炎症関連分子であるTRPM2は、敗血症モデルマウスで細菌のクリアランスおよび抗酸化物質HO-1の産生に関与することを見出した。

      PubMed: (link) 

    78. Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis, Sato-Numata K, Numata T, Okada Y, Channels (Austin), 8(3), 278-283, 2014
    79. PubMed: (link) 

    80. Transnitrosylation directs TRPA1 selectivity in N-nitrosamine activators, Kozai D, Kabasawa Y, Ebert M, Kiyonaka S; Firman, Otani Y, Numata T, Takahashi N, Mori Y, Ohwada T, Molecular Pharmacology, 85(1), 175-185, 2014
    81. PubMed: (link) 

    82. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner, Nakamura Y, Shi X, Numata T, Mori Y, Inoue R, Lossin C, Baram TZ, Hirose S, PLOS ONE, 8(12), e80376, 2013
    83. PubMed: (link) 

    84. Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of ClC-3, Sato-Numata K, Numata T, Okada T, Okada Y, Pflügers Archiv - European Journal of Physiology, 465(11), 1535-1543, 2013 (co-first author)
    85. PubMed: (link) 

    86. Involvements of the ABC protein ABCF2 and α-actinin-4 in regulation of cell volume and anion channels in human epithelial cells, Ando-Akatsuka Y, Shimizu T, Numata T, Okada Y, Journal of Cellular Physiology, 227(10), 3498-3510, 2012
    87. PubMed: (link) 

    88. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport, Numata T, Murakami T, Kawashima F, Morone N, Heuser JE, Takano Y, Ohkubo K, Fukuzumi S, Mori Y, Imahori H, Journal of the American Chemical Society, 134(14), 6092-6095, 2012
    89. 体内の細胞の興奮性を非侵襲的刺激で制御する技術は臨床応用へつながる。合成有機化学、薬学、生理学の医工学連携融合研究で光誘導性細胞興奮法を開発した。

      PubMed: (link) 

    90. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death, Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y, Cell Calcium, 51(2), 179-185, 2012
    91. PubMed: (link) 

    92. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise, Nishimune H, Numata T, Chen J, Aoki Y, Wang Y, Starr MP, Mori Y, Stanford JA, PLOS ONE, 7(6), e38029, 2012 (co-first author)
    93. PubMed: (link) 

    94. The ΔC splice-variant of TRPM2 is the hypertonicity-induced cation channel in HeLa cells, and the ecto-enzyme CD38 mediates its activation, Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F, Journal of Physiology (London), 590(5), 1121-1138, 2012
    95. 高浸透圧刺激による細胞縮小の際にTRPM2スプライスバリアントと協働的に働くCD38は、細胞容積を復帰させるNa+流入経路であること世界で初めて示した。

      PubMed: (link) 

    96. TRPA1 underlies a sensing mechanism for O2, Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y, Nature Chemical Biology, 7(10), 701-711, 2011
    97. PubMed: (link) 

    98. V₂ receptor-mediated autocrine role of somatodendritic release of AVP in rat vasopressin neurons under hypo-osmotic conditions, Sato K, Numata T, Saito T, Ueta Y, *Okada Y, Science Signaling, 4(157), ra5, 2011
    99. PubMed: (link) 

    100. Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis, Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M, Hypertension Research, 34(2), 193-201, 2011
    101. PubMed: (link) 

    102. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations, Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF, Molecular Brain, 3, 38, 2010 (co-first author)
    103. PubMed: (link) 

    104. Rim2alpha determines docking and priming states in insulin granule exocytosis, Yasuda T, Shibasaki T, Minami K, Takahashi H, Mizoguchi A, Uriu Y, Numata T, Mori Y, Miyazaki J, Miki T, Seino S, Cell Metabolism, 12(2), 117-129, 2010
    105. PubMed: (link) 

    106. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade, Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T, Proceedings of the National Academy of Sciences of the United States of America, 107(1), 332-337, 2010
    107. PubMed: (link) 

    108. A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7, Miyagi K, Kiyonaka S, Yamada K, Miki T, Mori E, Kato K, Numata T, Sawaguchi Y, Numaga T, Kimura T, Kanai Y, Kawano M, Wakamori M, Nomura H, Koni I, Yamagishi M, Mori Y, The Journal of Biological Chemistry, 284(49), 34400-34412, 2009
    109. PubMed: (link) 

    110. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound, Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y, Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5400-5405, 2009
    111. PubMed: (link) 

    112. Molecular determinants of sensitivity and conductivity of human TRPM7 to Mg2+ and Ca2+, Numata T, Okada Y, Channels (Austin), 2(4), 283-286, 2008
    113. PubMed: (link) 

    114. Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis, Numata T, Sato K, Okada Y, Wehner F, Apoptosis, 13(7), 895-903, 2008
    115. PubMed: (link) 

    116. Proton conductivity through the human TRPM7 channel and its molecular determinants, Numata T, Okada Y, The Journal of Biological Chemistry, 283(22), 15097-15103, 2008
    117. PubMed: (link) 

    118. A novel inhibitor of hypertonicity-induced cation channels in HeLa cells, Numata T, Wehner F, Okada Y, The Journal of Physiological Sciences, 57(4), 249-252, 2007
    119. PubMed: (link) 

    120. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells, Lee EL, Shimizu T, Ise T, Numata T, Kohno K, Okada Y, Journal of Cellular Physiology, 211(2), 513-521, 2007
    121. PubMed: (link) 

    122. Signalling events employed in the hypertonic activation of cation channels in HeLa cells, Wehner F, Numata T, Subramanyan M, Takahashi N, Okada Y, Cellular Physiology and Biochemistry, 20(1-4), 75-82, 2007
    123. PubMed: (link) 

    124. Direct mechano-stress sensitivity of TRPM7 channel, Numata T, Shimizu T, Okada Y, Cellular Physiology and Biochemistry, 19(1-4), 1-8, 2007
    125. 分子生理学的実験でTRPM7は、浸透圧性膨大、ずり応力、膜伸展の各種機械刺激感受性があることを示し、哺乳類のメカノセンサーであることを確定的にした。

      PubMed: (link) 

    126. Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells, Wang HY, Shimizu T, Numata T, Okada Y, Pflügers Archiv - European Journal of Physiology, 454(2), 223-233. 2007
    127. PubMed: (link) 

    128. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells, Numata T, Shimizu T, Okada Y, American Journal of Physiology-Cell Physiology, 292(1), C460-C467, 2007
    129. 細胞の調節性容積減少機構をトリガーする分子がTRPM7であることを明らかにした。哺乳類における機械刺激感受性イオンチャネル発見の先駆けとなった。

      PubMed: (link) 

    130. Characterization of stretch-activated calcium permeable cation channels in freshly isolated myocytes of the cricket (Gryllus bimaculatus) lateral oviduct, Numata T, Yoshino M, Journal of Insect Physiology, 51(5), 481-488, 2005
    131. PubMed: (link) 

    132. Characterization of single L-type Ca2+ channels in myocytes isolated from the cricket lateral oviduct, Numata T, Yoshino M, Journal of Comparative Physiology B, 175(4), 257-263, 2005
    133. PubMed: (link) 

    134. Mutations in EFHC1 cause juvenile myoclonic epilepsy, Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, Ganesh S, Sugimoto Y, Inazawa J, Bailey JN, Ochoa A, Jara-Prado A, Rasmussen A, Ramos-Peek J, Cordova S, Rubio-Donnadieu F, Inoue Y, Osawa M, Kaneko S, Oguni H, Mori Y, Yamakawa K, Nature Genetics, 36(8), 842-849, 2004
    135. PubMed: (link) 

    136. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel, Shimizu T, Numata T, Okada Y, Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6770-6773, 2004
    137. PubMed: (link) 

総説

  • Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: The roles and properties of TRPM2 and TRPM7, Yasunobu Okada, Tomohiro Numata, Ravshan Sabirov, Makiko Kashio, Petr Merzlyak, Kaori Sato-Numata Frontiers in Cell and Developmental Biology,11,1246955, 2023
  • Frontiers:( link

  • Functional characteristics and therapeutic potential of SLC41 transporters, Nemoto T, Tagashira H, Kita T, Kita S, Iwamoto T, J Pharmacol Sci, 151(2), 88-92, 2023
  • ScienceDirect: ( link

  • Elucidation of the Role of Ion Channels in Cell Volume Regulation and Development of New Methods for Controlling Ion Channel Activity for Medical Applications, Numata T, Akita J Med,49, 1-9, 2022
  • Akita University Institutional Repository System : (link) 

  • Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's, Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K, Frontiers in Physiology, 12:805148, 2021
  • PubMed: (link) 

  • Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death, Okada Y, Sato-Numata K, Sabirov RZ, Numata T, Frontiers in Cell and Developmental Biology, 9:702317, 2021
  • PubMed: (link) 

  • Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death, Okada Y, Sabirov RZ, Sato-Numata K, Numata T, Frontiers in Cell and Developmental Biology, 8:614040, 2021
  • PubMed: (link) 

  • Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties, Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ, Pharmacological Reviews, 71(1), 49-88, 2019
  • PubMed: (link) 

  • Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction, Okada Y, Numata T, Sato-Numata K, Sabirov RZ, Liu H, Mori SI, Morishima S, Current Topics in Membranes, 83, 205-283, 2019
  • PubMed: (link) 

  • "TRP inflammation" relationship in cardiovascular system, Numata T, Takahashi K, Inoue R, Seminars in Immunopathology, 38(3), 339-356, 2016
  • PubMed: (link) 

  • TRP channels as sensors of oxygen availability, Numata T, Ogawa N, Takahashi N, Mori Y, Pflügers Archiv - European Journal of Physiology, 465(8), 1075-1085, 2013
  • PubMed: (link) 

  • Targeting TRPs in neurodegenerative disorders, Takada Y, Numata T, Mori Y, Current Topics in Medicinal Chemistry, 13(3), 322-334, 2013
  • PubMed: (link) 

  • TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Koike C, Numata T, Ueda H, Mori Y, Furukawa T, Cell Calcium, 48(2-3), 95-101, 2010
  • PubMed: (link) 

  • Structures and variable functions of TRP channels, Numata T, Kozai D, Takahashi N, Kato K, Uriu Y, Yamamoto S, Kaneko T, Shinmoto T, Mori Y, Seikagaku, 81(11), 962-983, 2009
  • PubMed: (link) 

  • Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel, Okada Y, Sato K, Numata T, Journal of Physiology (London), 587(Pt 10), 2141-2149, 2009
  • PubMed: (link) 

共同研究・競争的資金等の研究課題

  • 村上 達也, 沼田 朋大
    動的エキシトンを利用した細胞膜機能の光制御
    日本学術振興会 科学研究費助成事業 学術変革領域研究(A) 2020年11月 - 2025年3月
  • 沼田 朋大
    分子間協働から創出される細胞容積調節能を利用した虚血性壊死からの救済策の開発
    日本学術振興会 科学研究費助成事業 基盤研究(C) 2021年4月 - 2024年3月

pagetop