Department of Integrative Physiology Akita University Graduate School of Medicine

JP
menu

Achievement

Articles

    1. SA4503 Mitigates Adriamycin-Induced Nephropathy via Sigma-1 Receptor in Animal and Cell-Based Models, Hideaki Tagashira, Shinsuke Chida, Md.Shenuarin Bhuiyan, Kohji Fukunaga, Tomohiro Numata, Pharmaceuticals (Basel), 18(2), 172, 2025
    2. MDPI:(link

    3. Shakuyaku-Kanzo-To Prevents Angiotensin Ⅱ-Induced Cardiac Hypertrophy in Neonatal Rat Ventricular Myocytes, Hideaki Tagashira, Fumiha Abe, Ayako Sakai, Tomohiro Numata, Cureus, 16(11): e74064
    4. Cureus:(link
      This work was supported by "KEIRIN"

    5. Role of Piezo2 in Schwann Cell Volume Regulation and its Impact on Neurotrophic Release Regulation, Chawapun Suttinont, Katsuyuki Maeno, Mamiko Yano, Kaori Sato-Numata, Tomohiro Numata,Moe Tsutsumi, Cellular Physiology and Biochemistry, 2024

      Cell Physiol Biochem:(link
      HP:(link
      This work was supported by "KEIRIN"

    6. Rescue of murine hind limb ischemia via angiogenesis and lymphangiogenesis promoted by cellular communication network factor 2, Shimizu M, Yoshimatsu G, Morita Y, Tanaka T, Sakata N, Tagashira H, Wada H, Kodama S, Scientific Report, 13(1): 20029, 2023
    7. Sci Rep(link

    8. Cardioprotective Effects of Moku-boi-to and its Impact on AngII-Induced Cardiomyocyte Hypertrophy,Tagashira H, Abe F, Sato-Numata K,Aizawa K, Hirasawa K, Kure Y, Iwata D and Numata T , Frontiers in Cell and Developmental Biology, 11, 1264076, 2023
    9. Frontiers:(link
      Nihon Keizai Shimbun:(link

    10. Classes on “Structure and Function of the Animal Body” in 2nd Grade Junior High School Science Classes Based on Measurement of Human Phonocardiogram and Electrocardiogram: Application of the ICST System,YOSHINO M, KATSUKI T, ASAHI S, NUMATA T, MATSUKAWA M, HARADA K,HASEGAWA T, Bulletin of Tokyo Gakugei University. Division of Natural Sciences, 75 : 63-75,2023,ISSN 2434-9380

    11. Sigma-1 receptor is involved in modification of ER-mitochondria proximity and Ca2+ homeostasis in cardiomyocytes, Tagashira H, Bhuiyan MS, Shinoda Y, Kawahata I, Numata T, Fukunaga K, The Journal of Physiological Sciences, 151(2), 128-133, 2023
    12. ScienceDirect: (link

    13. Intermediate conductance Ca2+-activated potassium channels are activated by functional coupling with stretch-activated nonselective cation channels in cricket myocytes, Numata T, Sato-Numata K, Yoshino M, Frontiers in Insect Science, 1, 2023
    14. Frontiers: (link

    15. TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel, Numata T, Sato-Numata K, Hermosura MC, Mori Y, Okada Y, Communications Biology, 4: 599, 2021
    16. PubMed: (link) 

    17. BK channels are activated by functional coupling with L-type Ca2+ channels in cricket myocytes, Numata T, Sato-Numata K, Yoshino M, Frontiers in Insect Science, 1, 662414, 2021
    18. Frontiers: (link) 

    19. Vasopressin neurons respond to hyperosmotic stimulation with regulatory volume increase and secretory volume decrease by activating ion transporters and Ca2+channels, Sato-Numata KNumata T, Ueta Y, Okada Y, Cellular Physiology and Biochemistry, 55(S1), 119-134, 2021
    20. PubMed: (link) 

    21. Expression and functions of N-type Cav2.2 and T-type Cav3.1 channels in rat vasopressin neurons under normotonic conditions, Sato-Numata K, Numata T, Ueta Y, Okada Y, The Journal of Physiological Sciences, 70(1), 49, 2020
    22. PubMed: (link) 

    23. Elucidation of the mechanisms for the underlying depolarization and reversibility by photoactive molecule, Numata T, Fukuda R, Hirano M, Yamaguchi K, Sato-Numata K, Imahori H, Murakami T, Cellular Physiology and Biochemistry, 54(5), 899-916, 2020
    24. PubMed: (link) 

    25. O2-dependent protein internalization underlies astrocytic sensing of acute hypoxia by restricting multimodal TRPA1 channel responses, Uchiyama M, Nakao A, Kurita Y, Fukushi I, Takeda K, Numata T, Tran HN, Sawamura S, Ebert M, Kurokawa T, Sakaguchi R, Stokes AJ, Takahashi N, Okada Y, Mori Y, Current Biology, 30(17), 3378-3396.e7, 2020
    26. PubMed: (link) 

    27. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation, Nakamura R, Numata T, Kasuya G, Yokoyama T, Nishizawa T, Kusakizako T, Kato T, Hagino T, Dohmae N, Inoue M, Watanabe K, Ichijo H, Kikkawa M, Shirouzu M, Jentsch TJ, Ishitani R, Okada Y, Nureki O, Communications Biology, 3(1), 240, 2020 (co-first author)
    28. PubMed: (link) 

    29. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation, Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Iwaya C, Horikawa T, Fujimura-Tanaka Y, Hamanoue N, Motonaga R, Tanabe M, Inoue R, Yanase T, Kawanami D, Endocrine Journal, 67(1), 99-106, 2020
    30. PubMed: (link) 

    31. Herbal components of Japanese Kampo medicines exert laxative actions in colonic epithelium cells via activation of BK and CFTR channels, Numata T, Sato-Numata K, Okada Y, Scientific Reports, 9(1), 15554, 2019
    32. PubMed: (link) 

    33. Short TRPM2 prevents the targeting of full-length TRPM2 to the surface transmembrane by hijacking to ER associated degradation, Yamamoto S, Ishii T, Mikami R, Numata T, Shimizu S, Biochemical and Biophysical Research Communications, 520(3), 520-525, 2019
    34. PubMed: (link) 

    35. Construction of a fluorescent screening system of allosteric modulators for the GABAA receptor using a turn-on probe, Sakamoto S, Yamaura K, Numata T, Harada F, Amaike K, Inoue R, Kiyonaka S, Hamachi I, ACS Central Science, 5(9), 1541-1553, 2019
    36. PubMed: (link) 

    37. TRPM7 is involved in acid-induced necrotic cell death in a manner sensitive to progesterone in human cervical cancer cells, Numata T, Sato-Numata K, Okada Y, Physiological Reports, 7(13), e14157, 2019
    38. PubMed: (link) 

    39. TRPM7 channels mediate spontaneous Ca2+ fluctuations in growth plate chondrocytes that promote bone development, Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H, Science Signaling, 12(576), eaaw4847, 2019
    40. PubMed: (link) 

    41. TRPM7-mediated spontaneous Ca2+ entry regulates the proliferation and differentiation of human leukemia cell line K562, Takahashi K, Umebayashi C, Numata T, Honda A, Ichikawa J, Hu Y, Yamaura K, Inoue R, Physiological Reports, 6(14), e13796. 2018
    42. PubMed: (link) 

    43. Cellular mechanism for herbal medicine Junchoto to facilitate intestinal Cl-/water secretion that involves cAMP-dependent activation of CFTR, Numata T, Sato-Numata K, Okada Y, Inoue R, Journal of Natural Medicines, 72(3), 694-705, 2018
    44. PubMed: (link) 

    45. Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin, Miyake T, Nakamura S, Meng Z, Hamano S, Inoue K, Numata T, Takahashi N, Nagayasu K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S, Frontiers in Physiology, 8, 878, 2017
    46. PubMed: (link) 

    47. Integrative approach with electrophysiological and theoretical methods reveals a new role of S4 positively charged residues in PKD2L1 channel voltage-sensing, Numata T, Tsumoto K, Yamada K, Kurokawa T, Hirose S, Nomura H, Kawano M, Kurachi Y, Inoue R, Mori Y, Scientific Reports, 7(1), 9760, 2017
    48. PubMed: (link) 

    49. Strategy to attain remarkably high photoinduced charge-separation yield of donor–acceptor linked molecules in biological environment via modulating their cationic moieties, Cai N, Takano Y, Numata T, Inoue R, Mori Y, Murakami T, Imahori H, The Journal of Physical Chemistry C, 121(32), 17457–17465, 2017
    50. ACS Publications: (link) 

    51. Uncovering the arrhythmogenic potential of TRPM4 activation in atrial-derived HL-1 cells using novel recording and numerical approaches, Hu Y, Duan Y, Takeuchi A, Hai-Kurahara L, Ichikawa J, Hiraishi K, Numata T, Ohara H, Iribe G, Nakaya M, Mori MX, Matsuoka S, Ma G, Inoue R, Cardiovascular Research, 113(10), 1243-1255, 2017
    52. PubMed: (link) 

    53. Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel, Sato-Numata K, Numata T, Inoue R, Sabirov RZ, Okada Y, Channels (Austin), 11(2), 167-172, 2017
    54. PubMed: (link) 

    55. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS, Miyake T, Nakamura S, Zhao M, So K, Inoue K, Numata T, Takahashi N, Shirakawa H, Mori Y, Nakagawa T, Kaneko S, Nature Communications, 7, 12840, 2016
    56. PubMed: (link) 

    57. Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry, Yamaura K, Kiyonaka S, Numata T, Inoue R, Hamachi I, Nature Chemical Biology, 12(10), 822-830, 2016
    58. PubMed: (link) 

    59. Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models, Ameku T, Taura D, Sone M, Numata T, Nakamura M, Shiota F, Toyoda T, Matsui S, Araoka T, Yasuno T, Mae S, Kobayashi H, Kondo N, Kitaoka F, Amano N, Arai S, Ichisaka T, Matsuura N, Inoue S, Yamamoto T, Takahashi K, Asaka I, Yamada Y, Ubara Y, Muso E, Fukatsu A, Watanabe A, Sato Y, Nakahata T, Mori Y, Koizumi A, Nakao K, Yamanaka S, Osafune K, Scientific Reports, 6, 30013. 2016
    60. PubMed: (link) 

    61. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells, Kiyonaka S, Kubota R, Michibata Y, Sakakura M, Takahashi H, Numata T, Inoue R, Yuzaki M, Hamachi I, Nature Chemistry, 8(10), 958-967, 2016
    62. PubMed: (link) 

    63. Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure., Ohno S, *Yokoi H, Mori K, Kasahara M, Kuwahara K, Fujikura J, Naito M, Kuwabara T, Imamaki H, Ishii A, Saleem MA, Numata T, Mori Y, Nakao K, Yanagita M, Mukoyama M, Scientific Reports, 6, 27192, 2016
    64. PubMed: (link) 

    65. Optical control of neuronal firing via photoinduced electron transfer in donor-acceptor conjugates, Takano Y, Numata T, Fujishima K, Miyake K, Nakao K, Grove WD, Inoue R, Kengaku M, Sakaki S, Mori Y, Murakami T, Imahori H, Chemical Science, 7(5), 3331-3337, 2016
    66. PubMed: (link) 

    67. Different contribution of redox-sensitive transient receptor potential channels to acetaminophen-induced death of human hepatoma cell line, Badr H, Kozai D, Sakaguchi R, Numata T, Mori Y, Frontiers in Pharmacology, 7, 19, 2016
    68. PubMed: (link) 

    69. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel, Sato-Numata K, Numata T, Inoue R, Okada Y, Pflügers Archiv - European Journal of Physiology, 468(5), 795-803, 2016
    70. PubMed: (link) 

    71. TRPM2 channels in alveolar epithelial cells mediate bleomycin-induced lung inflammation, Yonezawa R, Yamamoto S, Takenaka M, Kage Y, Negoro T, Toda T, Ohbayashi M, Numata T, Nakano Y, Yamamoto T, Mori Y, Ishii M, Shimizu S, Free Radical Biology and Medicine, 90, 101-113, 2016
    72. PubMed: (link) 

    73. Sensitization of H2O2-induced TRPM2 activation and subsequent interleukin-8 (CXCL8) production by intracellular Fe(2+) in human monocytic U937 cells, Shimizu S, Yonezawa R, Negoro T, Yamamoto S, Numata T, Ishii M, Mori Y, Toda T, The International Journal of Biochemistry & Cell Biology, 68, 119-127, 2015
    74. PubMed: (link) 

    75. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles, Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y, Imahori H, Murakami T, Angewandte Chemie International Edition, 54(40), 11725-11729, 2015
    76. PubMed: (link) 

    77. Compromised maturation of GABAergic inhibition underlies abnormal network activity in the hippocampus of epileptic Ca2+ channel mutant mice, tottering, Nakao A, Miki T, Shimono K, Oka H, Numata T, Kiyonaka S, Matsushita K, Ogura H, Niidome T, Noebels JL, Wakamori M, Imoto K, Mori Y, Pflügers Archiv - European Journal of Physiology, 467(4), 737-752, 2015
    78. PubMed: (link) 

    79. Transient receptor potential melastatin 2 protects mice against polymicrobial sepsis by enhancing bacterial clearance, Qian X, Numata T, Zhang K, Li C, Hou J, Mori Y, Fang X, Anesthesiology, 121(2), 336-351, 2014
    80. PubMed: (link) 

    81. Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis, Sato-Numata K, Numata T, Okada Y, Channels (Austin), 8(3), 278-283, 2014
    82. PubMed: (link) 

    83. Transnitrosylation directs TRPA1 selectivity in N-nitrosamine activators, Kozai D, Kabasawa Y, Ebert M, Kiyonaka S; Firman, Otani Y, Numata T, Takahashi N, Mori Y, Ohwada T, Molecular Pharmacology, 85(1), 175-185, 2014
    84. PubMed: (link) 

    85. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner, Nakamura Y, Shi X, Numata T, Mori Y, Inoue R, Lossin C, Baram TZ, Hirose S, PLOS ONE, 8(12), e80376, 2013
    86. PubMed: (link) 

    87. Acid-sensitive outwardly rectifying (ASOR) anion channels in human epithelial cells are highly sensitive to temperature and independent of ClC-3, Sato-Numata K, Numata T, Okada T, Okada Y, Pflügers Archiv - European Journal of Physiology, 465(11), 1535-1543, 2013 (co-first author)
    88. PubMed: (link) 

    89. Involvements of the ABC protein ABCF2 and α-actinin-4 in regulation of cell volume and anion channels in human epithelial cells, Ando-Akatsuka Y, Shimizu T, Numata T, Okada Y, Journal of Cellular Physiology, 227(10), 3498-3510, 2012
    90. PubMed: (link) 

    91. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport, Numata T, Murakami T, Kawashima F, Morone N, Heuser JE, Takano Y, Ohkubo K, Fukuzumi S, Mori Y, Imahori H, Journal of the American Chemical Society, 134(14), 6092-6095, 2012
    92. PubMed: (link) 

    93. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death, Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y, Cell Calcium, 51(2), 179-185, 2012
    94. PubMed: (link) 

    95. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise, Nishimune H, Numata T, Chen J, Aoki Y, Wang Y, Starr MP, Mori Y, Stanford JA, PLOS ONE, 7(6), e38029, 2012 (co-first author)
    96. PubMed: (link) 

    97. The ΔC splice-variant of TRPM2 is the hypertonicity-induced cation channel in HeLa cells, and the ecto-enzyme CD38 mediates its activation, Numata T, Sato K, Christmann J, Marx R, Mori Y, Okada Y, Wehner F, Journal of Physiology (London), 590(5), 1121-1138, 2012
    98. PubMed: (link) 

    99. TRPA1 underlies a sensing mechanism for O2, Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y, Nature Chemical Biology, 7(10), 701-711, 2011
    100. PubMed: (link) 

    101. V₂ receptor-mediated autocrine role of somatodendritic release of AVP in rat vasopressin neurons under hypo-osmotic conditions, Sato K, Numata T, Saito T, Ueta Y, *Okada Y, Science Signaling, 4(157), ra5, 2011
    102. PubMed: (link) 

    103. Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis, Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M, Hypertension Research, 34(2), 193-201, 2011
    104. PubMed: (link) 

    105. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations, Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF, Molecular Brain, 3, 38, 2010 (co-first author)
    106. PubMed: (link) 

    107. Rim2alpha determines docking and priming states in insulin granule exocytosis, Yasuda T, Shibasaki T, Minami K, Takahashi H, Mizoguchi A, Uriu Y, Numata T, Mori Y, Miyazaki J, Miki T, Seino S, Cell Metabolism, 12(2), 117-129, 2010
    108. PubMed: (link) 

    109. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade, Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T, Proceedings of the National Academy of Sciences of the United States of America, 107(1), 332-337, 2010
    110. PubMed: (link) 

    111. A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7, Miyagi K, Kiyonaka S, Yamada K, Miki T, Mori E, Kato K, Numata T, Sawaguchi Y, Numaga T, Kimura T, Kanai Y, Kawano M, Wakamori M, Nomura H, Koni I, Yamagishi M, Mori Y, The Journal of Biological Chemistry, 284(49), 34400-34412, 2009
    112. PubMed: (link) 

    113. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound, Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y, Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5400-5405, 2009
    114. PubMed: (link) 

    115. Molecular determinants of sensitivity and conductivity of human TRPM7 to Mg2+ and Ca2+, Numata T, Okada Y, Channels (Austin), 2(4), 283-286, 2008
    116. PubMed: (link) 

    117. Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis, Numata T, Sato K, Okada Y, Wehner F, Apoptosis, 13(7), 895-903, 2008
    118. PubMed: (link) 

    119. Proton conductivity through the human TRPM7 channel and its molecular determinants, Numata T, Okada Y, The Journal of Biological Chemistry, 283(22), 15097-15103, 2008
    120. PubMed: (link) 

    121. A novel inhibitor of hypertonicity-induced cation channels in HeLa cells, Numata T, Wehner F, Okada Y, The Journal of Physiological Sciences, 57(4), 249-252, 2007
    122. PubMed: (link) 

    123. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells, Lee EL, Shimizu T, Ise T, Numata T, Kohno K, Okada Y, Journal of Cellular Physiology, 211(2), 513-521, 2007
    124. PubMed: (link) 

    125. Signalling events employed in the hypertonic activation of cation channels in HeLa cells, Wehner F, Numata T, Subramanyan M, Takahashi N, Okada Y, Cellular Physiology and Biochemistry, 20(1-4), 75-82, 2007
    126. PubMed: (link) 

    127. Direct mechano-stress sensitivity of TRPM7 channel, Numata T, Shimizu T, Okada Y, Cellular Physiology and Biochemistry, 19(1-4), 1-8, 2007
    128. PubMed: (link) 

    129. Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells, Wang HY, Shimizu T, Numata T, Okada Y, Pflügers Archiv - European Journal of Physiology, 454(2), 223-233. 2007
    130. PubMed: (link) 

    131. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells, Numata T, Shimizu T, Okada Y, American Journal of Physiology-Cell Physiology, 292(1), C460-C467, 2007
    132. PubMed: (link) 

    133. Characterization of stretch-activated calcium permeable cation channels in freshly isolated myocytes of the cricket (Gryllus bimaculatus) lateral oviduct, Numata T, Yoshino M, Journal of Insect Physiology, 51(5), 481-488, 2005
    134. PubMed: (link) 

    135. Characterization of single L-type Ca2+ channels in myocytes isolated from the cricket lateral oviduct, Numata T, Yoshino M, Journal of Comparative Physiology B, 175(4), 257-263, 2005
    136. PubMed: (link) 

    137. Mutations in EFHC1 cause juvenile myoclonic epilepsy, Suzuki T, Delgado-Escueta AV, Aguan K, Alonso ME, Shi J, Hara Y, Nishida M, Numata T, Medina MT, Takeuchi T, Morita R, Bai D, Ganesh S, Sugimoto Y, Inazawa J, Bailey JN, Ochoa A, Jara-Prado A, Rasmussen A, Ramos-Peek J, Cordova S, Rubio-Donnadieu F, Inoue Y, Osawa M, Kaneko S, Oguni H, Mori Y, Yamakawa K, Nature Genetics, 36(8), 842-849, 2004
    138. PubMed: (link) 

    139. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel, Shimizu T, Numata T, Okada Y, Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6770-6773, 2004
    140. PubMed: (link) 

Review

  • Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release, Okada Y, J Physiol Sci,74, 34, 2024
  • BMC:( link

  • 漢方便秘薬 潤腸湯による腸の水分分泌メカニズムの解明, 沼田 朋大, Akita Med.J, 74(1),1-8,2024.2
  • Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: The roles and properties of TRPM2 and TRPM7, Yasunobu Okada, Tomohiro Numata, Ravshan Sabirov, Makiko Kashio, Petr Merzlyak, Kaori Sato-Numata Front Cell Dev Bio,11,1246955, 2023
  • Frontiers:( link

  • Elucidation of the Role of Ion Channels in Cell Volume Regulation and Development of New Methods for Controlling Ion Channel Activity for Medical Applications, Numata T, Akita J Med,49, 1-9, 2022
  • Akita University Institutional Repository System : (link) 

  • Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010's, Okada Y, Sabirov RZ, Merzlyak PG, Numata T, Sato-Numata K, Frontiers in Physiology, 12:805148, 2021
  • PubMed: (link) 

  • Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 2: Functional and Molecular Properties of ASOR/PAC Channels and Their Roles in Cell Volume Dysregulation and Acidotoxic Cell Death, Okada Y, Sato-Numata K, Sabirov RZ, Numata T, Frontiers in Cell and Developmental Biology, 9:702317, 2021
  • PubMed: (link) 

  • Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death, Okada Y, Sabirov RZ, Sato-Numata K, Numata T, Frontiers in Cell and Developmental Biology, 8:614040, 2021
  • PubMed: (link) 

  • Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties, Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ, Pharmacological Reviews, 71(1), 49-88, 2019
  • PubMed: (link) 

  • Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction, Okada Y, Numata T, Sato-Numata K, Sabirov RZ, Liu H, Mori SI, Morishima S, Current Topics in Membranes, 83, 205-283, 2019
  • PubMed: (link) 

  • "TRP inflammation" relationship in cardiovascular system, Numata T, Takahashi K, Inoue R, Seminars in Immunopathology, 38(3), 339-356, 2016
  • PubMed: (link) 

  • TRP channels as sensors of oxygen availability, Numata T, Ogawa N, Takahashi N, Mori Y, Pflügers Archiv - European Journal of Physiology, 465(8), 1075-1085, 2013
  • PubMed: (link) 

  • Targeting TRPs in neurodegenerative disorders, Takada Y, Numata T, Mori Y, Current Topics in Medicinal Chemistry, 13(3), 322-334, 2013
  • PubMed: (link) 

  • TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Koike C, Numata T, Ueda H, Mori Y, Furukawa T, Cell Calcium, 48(2-3), 95-101, 2010
  • PubMed: (link) 

  • Structures and variable functions of TRP channels, Numata T, Kozai D, Takahashi N, Kato K, Uriu Y, Yamamoto S, Kaneko T, Shinmoto T, Mori Y, Seikagaku, 81(11), 962-983, 2009
  • PubMed: (link) 

  • Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel, Okada Y, Sato K, Numata T, Journal of Physiology (London), 587(Pt 10), 2141-2149, 2009
  • PubMed: (link) 

pagetop